193.0.0.1

IPv6 Tutorial

MENOG 10 - April 2012 Matt Parker

1:00:0 193.0.0.1

About the RIPE NCC

Section 1

The IR system

- Five RIRs worldwide
 - Not for profit organisations
 - Funded by membership fees
 - Policies decided by regional communities

Goals: Registration

- Why?
 - Ensure uniqueness of Internet number resources
 - Provide contact information for users of Internet number resources
- How?
 - RIR whois databases
- Results:
 - IP address space used only by one organisation
 - Information available on users of Internet number resources

Goals: Aggregation

- Why?
 - Routing tables growing too fast
 - Provide scalable routing solution for Internet
- How?
 - Encourage announcement of whole allocations
 - Introduction of Classless Inter Domain Routing (CIDR)
- Result:
 - Growth of routing tables has slowed, but could still be better

Goals: Conservation

- Why?
 - IP addresses and AS Numbers are limited resources
 - These resources were not used efficiently in the past
- How?
 - Introduction of CIDR
 - Policies to ensure fair usage
- Results:
 - Growth in IP address space usage slowed down
 - Internet number resources are distributed based on need

Questions?

1:00:0 5 -5 193.0.0.1

Exercise:

RIPE & RIPE NCC

1:00:13 5 193.0.0.1

What about IPv4?

Section 2

RIPE NCC IPv4 Pool - Now

Run Out Fairly (of IPv4)

- Gradually reduced allocation / assignment periods
- Needs for "Entire Period" of up to...
 - 12 months (January 2010)
 - 9 months (July 2010)
 - 6 months (January 2011)
 - 3 months (July 2011)
- 50% has to be used up by half-period

Network Address Translation

- Extends the capacity of the IPv4 address space by sharing an IPv4 address between clients
- Fairly common technology, used everywhere
- Breaks the end to end connectivity model
- It doesn't allow communication with IPv6!
- You are probably going to need it in some form

Questions?

1:00:0 193.0.0.1

The road to IPv6

Section 3

There Was a Plan

- The original idea was to have IPv6 deployed before we were out of IPv4 addresses
- By now the whole of the Internet should have been dual-stacked
- And we wouldn't be here today.

IPv6 is the End Goal

- Exhaustion of the IPv4 free pool is a permanent problem
- The only way to support the future growth of the Internet is by deploying IPv6
- This will take time, so an intermediate solution has to be found
- Eventually, be prepared to switch off IPv4

Dual Stack while you can

Transitioning Mechanisms

• The IETF has several RFCs and active drafts, and some that have been abandoned already:

6in4 6to4 Teredo 6RD ISATAP TSP 6over4 IVI

NAT64 DS-lite A+P 4RD SIIT TRT NAT-PT

. . . .

Solving Two Problems

- Maintaining connectivity to IPv4 hosts by sharing IPv4 addresses between clients
 - Extending the address space with NAT/CGN/LSN
 - Translating between IPv6 and IPv4
- Provide a mechanism to connect to the emerging IPv6-only networks
 - Tunneling IPv6 packets over IPv4-only networks

Questions?

0:11:00:13 15 193.00 193.0.0.1

IPv6 Address Basics

Section 4

IPv6 Address Basics

- IPv6 address: 128 bits
 - 32 bits in IPv4
- Every subnet should be a /64
- Customer assignments (sites) between:
 - /64 (1 subnet)
 - /48 (65,536 subnets)
- Minimum allocation size /32
 - 65,536 /48s
 - 16,777,216 /56s

Add	ress	Ν	0	tat	tior	٦

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:ef11:0:0:c100:4d

1 1 1 0 1 1 1 1 0 0 0 1 0 0 1

Multiple addresses

Addresses	Range	Scope
Loopback	::1	host
Link Local	fe80::/10	link
Unique Local	fc00::/7	global
Global Unicast	2000::/3	global
6to4	2002::/16	global
Teredo	2001::/32	global
Multicast	ff00::/8	variable

193.0.0.1

Exercise

IPv6 Address Notation

IPv6 Stateless Address Autoconfiguration

- Host will automatically start looking for a router
- Response will contain:
 - Router's address
 - One or more link prefixes
 - SLAAC allowed yes/no
 - MTU

DHCPv6

- You can use DHCPv6 to get information like DNS servers
- Router message contains hints
 - If a DHCPv6 server is present
 - If the use of DHCPv6 is mandatory to get an address, the so called "managed" flag
 - Optionally the address of a DNS server (RFC 6106)
- With manual configuration subnet sizes other than /64 are possible, but please think twice

DNS in IPv6 is difficult?

- DNS is not IP layer dependent
- A record for IPv4
- AAAA record for IPv6
- Don't answer based on incoming protocol
- Only challenges are for translations
 NAT64, proxies

2001:db8:3e:ef11::c100:4d

Questions?

0:11:00:13 15 193.00 193.0.0.1

IPv6 Ripeness

Section 5

IPv6 Ripeness

- Rating system:
 - One star if the LIR has an IPv6 allocation
 - Additional stars if:
 - IPv6 Prefix is announced on router
 - A route6 object is in the RIPE Database
 - Reverse DNS is set up

- A list of all 4 star LIRs: <u>http://ripeness.ripe.net/</u>

IPv6 Enabled Networks

~c100:13 93.0.0

Transition Mechanisms

Section 6

Transitioning: Two Main Methods

- Transporting IPv6 in IPv4
 - -6in4
 - -6to4
 - Teredo
 - -6RD
- Translating IPv6 into IPv4
 - -NAT64/DNS64

6in4

- Manually configured tunnels towards a fixed tunnel broker like SixXS, Hurricane Electric or your own system
- Stable and predictable but not easily deployed to the huge residential markets
- MTU might cause issues

6to4 and Teredo

• 6to4

- "Automatic" tunnel, system can configure itself
- IPv4 address is part of the IPv6 address
- Requires a public IPv4 address
- Uses anycast to reach a nearby server
- Return traffic might choose another server

• Teredo

- Uses UDP to encapsulate packets
- Works across (most) NAT implementations

6RD

- Quite similar to 6to4
 - Encodes the IPv4 address in the IPv6 prefix
- Uses address space assigned to the operator
- The operator has full control over the relay
- Traffic is symmetric across a relay
 - Or at least stays in your domain
- Can work with both public and private space
- Needs additional software for signaling

NAT64/DNS64

- Single-stack clients will only have IPv6
- Translator box will strip all headers and replace them with IPv4
- Requires some DNS "magic"
 - Capture responses and replace A with AAAA
 - Response is crafted based on target IPv4 address
- Usually implies address sharing on IPv4

DS-lite

- Tunneling IPv4 over IPv6
- Allows clients to use RFC1918 addresses without doing NAT themselves
- NAT is centrally located at the provider
- Client's IPv6 address is used to maintain state and to keep clients apart
 - Allows for duplicate IPv4 ranges

Questions?

1:50125 -53 193.0.0.1

Tips

Section 7

Best Scenario: Act Now, Phased Approach

- Change purchasing procedure (feature parity)
 RIPE-501
- Check your current hardware and software
- Plan every step and test
- One service at a time
 - face first
 - core
 - customers
- Prepare to be able to switch off IPv4

Don'ts Don't separate IPv6 features from IPv4 • Don't do everything in one go

- Don't appoint an IPv6 specialist
 do you have an IPv4 specialist?
- Don't see IPv6 as a product
 - the Internet is the product

Business Case

- IPv4 is no longer equal to "the Internet"
- Avoiding the issue does not make it go away
- How much are you willing to spend now to save money later?
- Only IPv6 allows continued IP networking growth
- What do you want the Internet to be like in 5 years?

"IPv6, act now!"

Customer Premises Equipment Survey

- CPE devices that support IPv6
- Based on feedback from users
- Use it as a guide
- labs.ripe.net: search for 'IPv6 CPE'

Customers And Their /48

- Customers have no idea how to handle 65536 subnets!
- Provide them with information
 - <u>https://www.ripe.net/lir-services/training/material/IPv6-</u> <u>for-LIRs-Training-Course/IPv6_addr_plan4.pdf</u>

	The Er	nd!	Край	ΥD	iwedd
ä.l.	11:	Соңы	Jhno	FI	Finis
	Ene	de Fir	nvezh	Liðugt	Кінець
Konec	Kraj	Ëni	n Fund	پایان	
Lõpp	Beigas	Vége	Son Ar	Críoch	Kpaj
Fine	הסוף inde	Endir	Sfârşit	Fin	Τέλος
Конец Slut Slutt လာပ်သပ်က်က္သာက္တ Pabaiga					
Fim	Am	aia L	.oppu Tr	niem	Koniec